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Absolute and convective instabilities of natural convection flow in boundary-layer regime
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The spatiotemporal instability of the buoyancy-driven flow adjacent to a vertically heated wall, which is
immersed in thermally stratified medium, is studied theoretically and numerically. The temperature gradients
ratio between the wall and the ambient fluid is shown to lead to rich scenario of absolute-convective instability
transitions. The direct numerical simulations consistent with the theoretical prediction are presented. The
supercritical steady state, found in previous simulations of the natural convection in vertically heated square
cavity, is explained in terms of the convective instability, and the nonlinear effect on the convectively unstable
waves is discussed as well.
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I. INTRODUCTION from laminar flow to turbulencgl1-14. In convectively un-
) ] _stable flow, the amplified disturbances move away from the
The buoyancy-induced natural convection flow contigu-goyrce(e.g., forced flat boundary-layer flowwhile in abso-

ous to a heated vertical wall is a fascinating problem in ﬂUidIuter unstable flow, the growing wave packet expands
mechanics and thermal physics literature. Mostly, temperaground the source and its frequency is insensitive to low
ture defect and flow reversal are formed in such boundarygise |evelge.g., the Karman vortex streefhe distinction
layer when the ambient fluid is thermally stratified. In pastrequires a fully spatiotemporal analysis, which was first used
theoretical studies, only two kinds of boundary conditionsjn plasma instability15], and more recently applied to natu-
were considered: isothermal plate and plate dissipating uni convection flowg8,16). Forced laminar flat-plate bound-
form heat flux. _The _similarity solut_ion for uniform h_eat fqu ary layer was investigated and found the transient response
case was studied first, because its steady state is a simpjg correspond to convective instabilifg7]. While for natu-
parallel flow[1-6]. A good example for such boundary layer ra| convection boundary layer near an isothermal wall,
is the sidewall layer in a square cavity with vertical walls kyizhevsky et al. [8] found that the flow turned from con-
transfering uniform heat flux. While the similarity solution yective unstable into absolute unstable at a critical Grashof
[7] and the corresponding instability propertig for iso-  nymper, which increased with the Prandtl number. However,
thermally heated plate were obtained much later, because thghether there is absolute instability for uniform heat-flux
convection is spatially developing flow, where the down-poundary layer, which is a more appropriate model than the
stream variation of the flow field must be considered.jsothermal one for solar applications, is unclear at present,

Kimura and Bejar{6] studied the natural convection in rect- gnq this fact is the principal motivation behind the present
angular cavity with uniform heat flux boundary condition, gyqy.

and concluded that the core fluid must be motionless and The gutline for the remainder of this paper is as follows.

linearly stratified. Afterwards, numerical simulations con-fijrst, we present a similarity solution for the boundary-layer
firmed th(_eir conclusions, and linear instability analyses wergqy, including previous steady state solutions as its special
also carried ouf9]. However, a strange phenomenon wascases. Second, it is discussed how the fluid property and the
found in numerical simulations: the flow field tends to CON-packground thermal stratification affect the convective-
verge to a steady state, the supercritical steady state, thouglsolute instability transition. Third, a quantitative compari-
the Grashof number is much larger than the linear criticakon petween the direct numerical simulation and the theoret-
value[10]. It was presumed that this tendency may be causeg | analysis is made by the examination of frequency and

by the convectively unstable properties of the flow, and thgyaye number of the fluctuating waves. A concluding discus-
flow may transfer to be absolutely unstable at higher Grashofjon, is given in the final section.

number. However, serious efforts have not yet been made.
The convective and absolute instabilities in shear flows
have attracted increasing attention not only because of their
crucial importance for flow control but also for the funda- The boundary layer to be considered here differs from
mental interest to understand the various processes leadifgevious ones in that the temperature of the vertical heated
plate T',(x) and the ambient fluid”(x) haveindependent
vertical temperature gradients,, and N.,, say, T ,(x*)
* Author to whom correspondence should be addressed. Email age T (0) +Nyx*, T (x*)=T (0)+N.x*, T (0)-T .(0)
dress: tao@bpi.cam.ac.uk =AT(0) >0 (see Fig. 1 The coordinate* is measured ver-

IIl. GOVERNING EQUATIONS
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FIG. 1. Sketch of the setup. Note that the boundary layers are- T*_(x*)]/[T",(x*) =T (x*)],

not drawn in real scale, because they are very thin in redifg.
heat flux. For details see text.

tically and opposite to the direction of gravity acceleratipn
andy* is the coordinate normal to the surfa¢gars indicate
dimensional quantitigs The subscript %" denotes the am-

PHYSICAL REVIEW E70, 066311(2004

tween the plate and the background fluidx&dt=0. After
introducing a parametes, which is the ratio between the
temperature gradients, andN,,, we can obtain a similarity
solution, and by which a variety of cases from the isothermal
to the uniform-heat-flux boundary conditions can be ana-
lyzed within a single framework.

In order to get a stable thermally stratified medium, we
assumeN,,>0 andN,,=0. In addition, the plate is assumed
to be of finite extent, and its temperature is above the sur-
rounding fluid at any elevatiorL* is a long length scale
where T'(L*)=T",(0). The Grashof number Gr and the
Prandtl number Pr are defined pgBAT(0)L"/+?]¥* and
vl k, and the temperaturé, coordinategX,Y), time 7, and
pressure P are dimensionalized as [T*(x*)
(x*,y*)Gr/L*,
™ vGr/L", and[P*—P.(x*)]L"?/(pr?Gr*), wherep, v, «,
and B are the fluid density, the kinematic viscosity, the ther-
mal diffusivity and the coefficient of thermal expansion. By
applying the Boussinesq assumption, we obtain the govern-
ing dimensionless continuity, momentum and energy

bient condition, and\T(0) is the temperature difference be- equations
|
( oJ v
—_ = O
X Y
U U U P 1 1
—+U—+V—=-—+—VU+—¢l+(a-1eX
| X Y aX  Gr Gl +@-LeX] "
N o N N P 1,
—H+U+V o= —+ VA
or oX Y Y Gr
7] 0 0 1 Ul+(@-1 2@-1)4
9,y O L o, Ullt@-D¢]  2a-1i¢
L7 X Y PrGr Gil+(a-1eX] PrGe ox
[
with boundary conditions: 9
g Up="22=2[1 +(a- DeXIFy,
U(7,X,0) = V(7,X,0) = 1 — ¢(7,X,0) = (7, X, ) Y
=U(7,X,%0) =P(7,X,%) =0, 2 - _
where the operatovV2=2/ X2+ #/3Y?, ande=1/Gr, char- Vo=- X 2V2(a=1)sFo. (4)

acterizes the degree of spatial inhomogeneity of the basic

flow. As shown in Eq.(2), no-slip boundary condition for
velocity is used on the wall, while in the far field the vertical
velocity is diminished.

The following forms of stream functiory,, horizontal
length scalen, and temperaturél, are proposedsubscript
“0” refers to the basic flowin order to get a similarity so-
lution

Po(XY) = 202[1 +(a- DeXIFo(n), 7=YN2,

¢O(X!Y) = HO( 7])! (3)
then the velocities in the boundary layer are given by

Since the velocity component includes the coordingtéhe
boundary-layer flow is slowly spatially developing flow ex-
cept for a special casga=1).

Employing the boundary-layer approximation and the ear-
lier transformations to Eqs¢l) and(2), the steady basic flow
can be described by the following ordinary differential equa-
tions:

Fo" +4(a—- DFF," - Ha-1)(Fy )2 +Hy=0

1 5
ErHO” +4(a-1)FoHy' - 4F,'[1 +(a-1)Hg]=0 ®

with boundary conditions
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Fo(0) =Fy'(0) =1 —Hg(0) = Fy () =Hg() =0. (6)  uniform-heat-flux wall to the isothermal wall just by varying
i i ) o _ the temperature gradient raté Equations(5) and (6) are
The interesting point of the similarity solution supported resolved by forth-order Runge-Kutta procedure and shooting
by the earlier equations is: whea=0 or N=0, we get method.
T, (¥=T,(0), hence, the wall is isothermally heated, and It is shown in Fig. 2 that the steady basic flow has rever-
the equations reduce to the ones used by Krizhewtkgl.  sals and temperature defects for both the isothef@ab)
[8]; while a=1, the wall and the ambient fluid have the sameand the uniform-heat-flux(a=1) boundary conditions.
vertical temperature gradient. Consequently the local hedtargera means less influence of the stratified background on
flux dissipated from the plate is the flow field. Whena=9 no flow reversal can be found in
the velocity profile, though the temperature defect still exists.

qix*)=-X\ JgT* In fact the flow reversal is difficult to find aftea>5 for
AN* | ye=o Pr=6.7.
The instability analysis is focused on the transition be-
- _7‘ Ho [T .(0)- T (0)][Gr+(a- 1X] tween the two typical boundary conditiof@<a<1) and in
VaLx an |, W ” " the range B=eX<1 (0<x* <L*). The following forms of

@) disturbance stream function and temperature are employed
(subscript “1” refers to the disturbance figld

which represents a uniform-heat-flux boundary condition as N~ : : :
a is unit. Here is the conductivity of the fluid. By simple 1= 2V2[1 +(a- DeXWi(mexdilkX - 7],
transformation, the ordinary differential equations &or 1 _ . _
can be reduced easily to the same form as discussed previ- ¢1= Co(mexii(kX =, 7)], (8)
ously [4,6]. Therefore, present similarity solution makes it and the Orr-Sommerfeld equation coupled with energy equa-
possible to study the flow fields continuously from thetion can be obtained according to stability theory

w ’ 1 " n !
(v, - kzwl)(':()’ - E) ~Fo"W1= %{Wl - 20"+ K + Dy}
9

! w ! 1 n
(Fo - E)(Dl_ Ho W= @,(Cbl - kzq)l)

with the boundary conditions W
w="—7=___ .
(0)=,(0) = B,(0) =Wy = W, () = Dy () VA r@nhexd
V1(0) =, (0) = D1(0) = ¥y() =¥, () = Dy() =0,
! ! ! ! ! ! 10 The modified Grashof number, wave number and fre-
(10) quencyG, k, andw are introduced only to simplify the equa-
tions. It is noted that in order to deduce the earlier equations
where some additional terms are ignored @s'> 1, and this con-
dition is satisfied well in all instability problems discussed

G=2\2GM1+(a-DeX], k=12k,, later.
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In Sec. Il we carry out a fully spatiotemporal stability absolute and convective instabilities: the flow is convectively
analysis. Consequently both the modified wave nurklzaxd  unstable(CU) if w,;<<O and absolutely unstablAU) if
frequencyw of the disturbances are taken as complex num-w,;>0. Moreover, the saddle point described by EtR)
bers. The boundary conditions at infinity are replaced bymust be a pinching point between two distinct spatial
Nachtsheim’s asymptotic formd8] at a finite cross-stream branchesc+ andk- (k complex andw; constant originating
distancesna,for numerical reasons. The coupled disturbanceffom distinct halves of thé& plane whenw; is decreased. This
Egs.(9) and(10) are discretized with fourth-order finite dif- condition is systematically checked in present work.
ference scheme at uniformly distributed points in they nu#]tl)?a rg]?smllgslsntrf;gﬁ tﬁae) éﬂﬁE;YT/Z?Léhetfzgof?éﬂvf?s (sgtgt;slz()f
interval [O, . The resulting amplitude equations define . c e
an algegraigg?(]stem(\lfl,qh) :go WitFr: sparseqﬁx oncom- At higher G (G.>G>G,), the flow becomes convectively

plex matrix A. The homogeneous equation admits nonzerbmsl‘tabrl]e' F?]r sanaﬂt (€.9.a=0.15, it ISI |Ilui'strated |nt|r|gu—h
solutions for¥, and®, if and only if the determinant of: ngly that the flow tums to be absolutely unstable when

Ga< G <G, TheG,, andG,, are the critical Grashof num-
bers defining the convective-absolute and the absolute-
convective instability transitions. The existence @&f, for

_ _ ] isothermal wall(a=0) was reported beforgs], but the re-

Based on the earlier relation a varialgeg., the complex  searchers did not explore higher Grashof number to find the
k) can be resolved by the predictor-corrector method after als, . Figure 3a) also shows that the absolutely unstable re-
the remaining variables are SDECiﬁEd. In order to aChieV@ion becomes smaller at |argar and aftera is |arger than
numerical accuracy of the results, a high enough number a.17 the flow system does not support the absolutely unstable
pointsn and a large enoughy,a,, must be chosen. In this modes for Pr=6.qwatel. Since it is well known that the
paper, the result is required to vary by no more than 0.1%psolute unstable mode can be self-excited and behaves as an
when increasingymay t0 1.57ma As a consequencepma  oscillation source, the laminar-turbulence transition is much
<7n(Fy'may is used for all subsequent calculations. Theeasier for absolutely unstable flow than for convectively un-
grid point number is determined when the absolute value o§table one. Therefore, the importance of the present result
the result varies by less than $0on doubling the grid [Fig. 3a)] is that it provides a new mechanism for us to
points. The numerical methods described here have beatbntrol the flow state and heat transfer: increasinghen we
used to study the absolute instability in vertical heated slotvant to keep the flow laminar and decrease heat dissipation,
[16], and tested successfully against the results of previousr decreasing if we hope it to be turbulent.
researche$s,19. Whena=1, it is shown in Fig. &) that enlarging Prandt|
number increase&w,)max However, the flow remains con-
vectively unstable even Pr reaches as high as 10 000, where
the solutions should be very close to their asymptotic limits.
This result confirms the first part of past conjecture: the flow
_ The wave number observed along the wayr=0 at @ \yith uniform heat flux boundary is convectively unstable,
fixed spatial Ioca_t|0n in a laboratory frame is defined by they ;t genies the second part at least in the view of linear
zero-group-velocity theory: the existence of absolute instability.

In order to analyze an isothermal boundary layer,
Krizhevsky et al. [8] defined a velocity ratidR, the ratio
between the absolute values of the minimum and the maxi-
mum in the vertical velocity profile, and concluded thatas
increased the flow was more susceptible to be absolutely
and w,=w(ko). The real partw,, is referred as the absolute unstable. In present case, our interest mostly liesain
frequency and the imaginary past; is denoted the absolute [0, 1], and smallea means larger downstream variation of
growth rate. The Briggs-Bers criterion is used to distinguishthe temperature difference between the wall and the ambient

A(k,,G)| = |A(k,o,Gr,Xg)| = 0. (11)

11l. SPATIOTEMPORAL INSTABILITY
Jw
st =0,
X (ko)

(12
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FIG. 4. Comparison of(a)
stream function andb) tempera-
ture between the similarity solu-
tions fora=1 (solid line) and the
numerical results obtained for Gr
=23.2(0) and Gr=27.8">). The
simulation data are calculated at
the centerline(x*=0) when the
. \ \ \ flow reaches its steady state.
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fluid at the same elevation, which leads to stronger reverskave a significant influence on solution as long as P13

flow. As a result, largeR corresponds to smaller[see Fig.  or greatef7]. In our numerical simulation Pr=0.71, and it is

2(a)], and according to the earlier analysis the flow is moreshown in Fig. 4 that when the flow reaches a steady state, the

yleldlng to the absolute instability. Therefore, our results alehumerical data for temperature and stream function agree

in consistent with the conclusion of Krizhevsky al. very well with the similarity solutions. Since the unstable
modes will grow up from small disturbances to saturated
states, a natural question that needs to be answered is how
the nonlinear process affects their spatiotemporal properties.

IV. DIRECT NUMERICAL SIMULATION !n or.der to study thg nonlinear effect, we cho_qse Gr=45,

which is nearly two times larger than the critical value

In this section we compare our theoretical results with(Glerit=24 for Pr=0.71. The initial disturbance is introduced
direct numerical simulations of the natural convection flowby using a solution obtained for a different Grashof number
in a square cavity filled with air, whose vertical sidewalls as the initial field. Since the flow in the boundary-layer re-
dissipate uniform heat flux while the top and bottom ends argime is almost parallel in vertical direction, the nonuniform
adiabatic (see Fig. 1 When the heat flux is large, two disturbances arise near the cavity corners. The temporal evo-
boundary-layer regimes will form near the vertical walls, lutions of the horizontal velocity at fixed points are shown
while the core fluid is motionless and the core temperaturén Fig. 5. It is illustrated that the initial disturbances trigger
varies linearly in vertical direction. Gil[4] studied such regular fluctuating waves that drift downstream. The oscillat-
buoyancy layer and found an asymptotic solution, which ising frequency and the maximum amplitude of these waves
just a special casea=1) of the present similarity solution.  jncrease in the downstream direction, and reach some finite

Based on the Boussinesq assumption, the completgglues at last.

Navier-Stokes equation coupled with energy equation is in-
tegrated by a pseudospectral algorithm, and no-slip boundary
condition is used for velocity on all walls. A spatial expan-
sion in series of Chebyshev polynomials and a semi-implicit
second-order finite-difference time-marching scheme are 0.0075
used. The Helmholtz equations arising from time discretiza-
tion are solved with the tau method and the partial diagonal-
ization algorithm[20]. The incompressibility condition is 0.0025
treated by the use of an influence matrix technif@e22. L
Spatial resolution 25% 385 is used in order to obtain high ¥ 0.0000 Ve
accuracy. For the sake of brevity, the details of the algorithm
are not reproduced here.

Conveniently, the origin of the coordinates is chosen at -0.0050
the center of the left vertical wall. The asymptotic relation
for Pr<1 between the length scal¢ and the width of the
square cavityH can be obtained according to Kimura and -0.0100
Bejan’s analysig6]:

0.0100

0.0050

T

-0.0025

wwsezszi M

-0.0075

-0.0125

)
0 1000 2000 3000
T

H 1
— = 7GI‘PI1/4. (13) . . ;
L* 2y2 FIG. 5. Time traces of horizontal velocity for Gr=45 at several

locations in the boundary-layer regime. The thick solid line, dashed

line, solid line, and dotted line indicate data at points
Although the earlier relation was obtained for large Prandtl(x*/H,y*/H)=(-0.3649,0.001% (-0.1989,0.001% (0, 0.0014,
number, it was concluded that the Prandtl number does naind(0.3649, 0.001%
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The spatial structure of the disturbing temperature field is V. CONCLUSIONS

shown in Fig. 6. Arising near the left-bottom corner, the spa-
tially amplified wave packet is swept downstream and devel- The instability properties of natural convection in the
ops to a saturated state. This is a typical feature of convectiveoundary-layer regime with thermal stratification back-
instability. A close examination can find that the wavelengthground have been investigated theoretically and numerically.
becomes short during the nonlinear evolution. After blocked By introducing a parametes, the temperature gradient
by the top boundary at the left-top corner, the saturatedatio between the wall and the ambient fluid, we obtain a
waves are damped. Since there is no mechanism in a closestmilarity solution, which includes previous solutions as its
cavity to feed perturbations at the upstream part of thespecial cases. Based on an instability analysis with the
boundary-layer regime, as shown in Fig. 6 f&¥r9700, the coupled Orr-Sommerfeld equation and the energy equation,
disturbing field tends to vanish after long time iteration. Theit is shown that the temperature gradient ratio has dramatic
flow near the right vertical wall shows similar phenomena asnfluence on the spatiotemporal properties of the flow. For
revealed in Fig. 6 except the orientation: the wave packesmalla, the flow may change from convectively unstable to
drifts from top to bottom and is damped at the right-bottomabsolutely unstable &5.,> G > G,., and will turn to be con-
corner. vectively unstable again whefs>G,. These instability
Since the fluctuating waves present convectively unstabl&ransitions not only reveal a mechanism to control the flow
properties obviously, we compare them with analytical solu-state, but also provide an ideal model for further study of the
tions obtained by using spatial mode, where the frequency global instability[14], which exists wherever local absolute
is looked as real and is taken as complex. It is shown instability occurs for spatially developing flows.
clearly in Fig. 7 that at the first stage of instability, the fre-  According to the instability theory, only convectively un-
quency and wave number of the fluctuating wave coincidestable mode exists whemis large(e.g.,a=1). This predic-
well with the values of the convectively unstable mode withtion is consistent with our numerical result about the
the largest spatial growth rate. According to present numeriboundary-layer regime in a square cavity. When the flow is
cal simulations, we can also conclude that, although the norsteady, the numerical data for velocity and temperature agree
linear effect leads to the increase of the wave number and tha&ell with the similarity solutions. When disturbances are in-
frequency, the flow in the boundary-layer regime still re-troduced, the convectively unstable mode with the largest

mains convectively unstable. growth rate will develop first and dominate the flow pattern.
0.025r 0025
o2k ooak FIG. 7. The thepretical growth
. rate of convectively unstable
0015k ootsk mode as a function ofa) fre-
quency o, and (b) wave number
oot ook k. for Gr=45. The thin vertical
dashed lines indicate the initial
0.005 | 0.005 state of the fluctuating wave found
in numerical simulation, and the
0 0 thick dashed lines indicate its
finite-amplitude state near the left-
0005t ) -0.005 L top corner.
0.02 0.03 0(.;4r 0.05 0.06 0.1 0.2 k, 03 0.4
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