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The spatiotemporal instability of the buoyancy-driven flow adjacent to a vertically heated wall, which is
immersed in thermally stratified medium, is studied theoretically and numerically. The temperature gradients
ratio between the wall and the ambient fluid is shown to lead to rich scenario of absolute-convective instability
transitions. The direct numerical simulations consistent with the theoretical prediction are presented. The
supercritical steady state, found in previous simulations of the natural convection in vertically heated square
cavity, is explained in terms of the convective instability, and the nonlinear effect on the convectively unstable
waves is discussed as well.
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I. INTRODUCTION

The buoyancy-induced natural convection flow contigu-
ous to a heated vertical wall is a fascinating problem in fluid
mechanics and thermal physics literature. Mostly, tempera-
ture defect and flow reversal are formed in such boundary
layer when the ambient fluid is thermally stratified. In past
theoretical studies, only two kinds of boundary conditions
were considered: isothermal plate and plate dissipating uni-
form heat flux. The similarity solution for uniform heat flux
case was studied first, because its steady state is a simple
parallel flow[1–6]. A good example for such boundary layer
is the sidewall layer in a square cavity with vertical walls
transfering uniform heat flux. While the similarity solution
[7] and the corresponding instability properties[8] for iso-
thermally heated plate were obtained much later, because the
convection is spatially developing flow, where the down-
stream variation of the flow field must be considered.
Kimura and Bejan[6] studied the natural convection in rect-
angular cavity with uniform heat flux boundary condition,
and concluded that the core fluid must be motionless and
linearly stratified. Afterwards, numerical simulations con-
firmed their conclusions, and linear instability analyses were
also carried out[9]. However, a strange phenomenon was
found in numerical simulations: the flow field tends to con-
verge to a steady state, the supercritical steady state, though
the Grashof number is much larger than the linear critical
value[10]. It was presumed that this tendency may be caused
by the convectively unstable properties of the flow, and the
flow may transfer to be absolutely unstable at higher Grashof
number. However, serious efforts have not yet been made.

The convective and absolute instabilities in shear flows
have attracted increasing attention not only because of their
crucial importance for flow control but also for the funda-
mental interest to understand the various processes leading

from laminar flow to turbulence[11–14]. In convectively un-
stable flow, the amplified disturbances move away from the
source(e.g., forced flat boundary-layer flow); while in abso-
lutely unstable flow, the growing wave packet expands
around the source and its frequency is insensitive to low
noise levels(e.g., the Kármán vortex street). The distinction
requires a fully spatiotemporal analysis, which was first used
in plasma instability[15], and more recently applied to natu-
ral convection flows[8,16]. Forced laminar flat-plate bound-
ary layer was investigated and found the transient response
to correspond to convective instability[17]. While for natu-
ral convection boundary layer near an isothermal wall,
Krizhevsky et al. [8] found that the flow turned from con-
vective unstable into absolute unstable at a critical Grashof
number, which increased with the Prandtl number. However,
whether there is absolute instability for uniform heat-flux
boundary layer, which is a more appropriate model than the
isothermal one for solar applications, is unclear at present,
and this fact is the principal motivation behind the present
study.

The outline for the remainder of this paper is as follows.
First, we present a similarity solution for the boundary-layer
flow, including previous steady state solutions as its special
cases. Second, it is discussed how the fluid property and the
background thermal stratification affect the convective-
absolute instability transition. Third, a quantitative compari-
son between the direct numerical simulation and the theoret-
ical analysis is made by the examination of frequency and
wave number of the fluctuating waves. A concluding discus-
sion is given in the final section.

II. GOVERNING EQUATIONS

The boundary layer to be considered here differs from
previous ones in that the temperature of the vertical heated
plate T*

wsxd and the ambient fluidT*
`sxd have independent

vertical temperature gradientsNw and N`, say, T*
wsx* d

=T*
ws0d+Nwx*, T*

`sx* d=T*
`s0d+N`x*, T*

ws0d−T*
`s0d

=DTs0d.0 (see Fig. 1). The coordinatex* is measured ver-
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tically and opposite to the direction of gravity accelerationg,
andy* is the coordinate normal to the surface(stars indicate
dimensional quantities). The subscript “̀ ” denotes the am-
bient condition, andDTs0d is the temperature difference be-

tween the plate and the background fluid atx* =0. After
introducing a parametera, which is the ratio between the
temperature gradientsNw andN`, we can obtain a similarity
solution, and by which a variety of cases from the isothermal
to the uniform-heat-flux boundary conditions can be ana-
lyzed within a single framework.

In order to get a stable thermally stratified medium, we
assumeN`.0 andNwù0. In addition, the plate is assumed
to be of finite extent, and its temperature is above the sur-
rounding fluid at any elevation.L* is a long length scale
where T*

`sL* d=T*
ws0d. The Grashof number Gr and the

Prandtl number Pr are defined asfgbDTs0dL*3 /n2g1/4 and
n /k, and the temperaturef, coordinatessX,Yd, time t, and
pressure P are dimensionalized as fT* sx* d
−T*

`sx* dg / fT*
wsx* d−T*

`sx* dg, sx* , y* dGr/L*,
t* nGr3/L*2, andfP*−P`sx* dgL*2 / srn2Gr4d, wherer, n, k,
andb are the fluid density, the kinematic viscosity, the ther-
mal diffusivity and the coefficient of thermal expansion. By
applying the Boussinesq assumption, we obtain the govern-
ing dimensionless continuity, momentum and energy
equations

5
]U

]X
+

]V

]Y
= 0

]U

]t
+ U

]U

]X
+ V

]U

]Y
= −

]P

]X
+

1

Gr
¹2U +

1

Gr
ff1 + sa − 1d«Xg

]V

]t
+ U

]V

]X
+ V

]V

]Y
= −

]P

]Y
+

1

Gr
¹2V

]f

]t
+ U

]f

]X
+ V

]f

]Y
=

1

PrGr
¹2f −

Uf1 + sa − 1dfg
Grf1 + sa − 1d«Xg

+
2sa − 1d
PrGr2

]f

]X

6 s1d

with boundary conditions:

Ust,X,0d = Vst,X,0d = 1 −fst,X,0d = fst,X,`d

= Ust,X,`d = Pst,X,`d = 0, s2d

where the operator¹2=]2/]X2+]2/]Y2, and«=1/Gr, char-
acterizes the degree of spatial inhomogeneity of the basic
flow. As shown in Eq.(2), no-slip boundary condition for
velocity is used on the wall, while in the far field the vertical
velocity is diminished.

The following forms of stream functionw0, horizontal
length scaleh, and temperatureH0 are proposed(subscript
“0” refers to the basic flow) in order to get a similarity so-
lution

w0sX,Yd = 2Î2f1 + sa − 1d«XgF0shd, h = Y/Î2,

f0sX,Yd = H0shd, s3d

then the velocities in the boundary layer are given by

U0 =
]w0

]Y
= 2f1 + sa − 1d«XgF08,

V0 = −
]w0

]X
= − 2Î2sa − 1d«F0. s4d

Since the velocity component includes the coordinateX, the
boundary-layer flow is slowly spatially developing flow ex-
cept for a special casesa=1d.

Employing the boundary-layer approximation and the ear-
lier transformations to Eqs.(1) and(2), the steady basic flow
can be described by the following ordinary differential equa-
tions:

5 F0- + 4sa − 1dF0F09 − 4sa − 1dsF08d
2 + H0 = 0

1

Pr
H09 + 4sa − 1dF0H08 − 4F08f1 + sa − 1dH0g = 06 s5d

with boundary conditions

FIG. 1. Sketch of the setup. Note that the boundary layers are
not drawn in real scale, because they are very thin in reality.q is
heat flux. For details see text.
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F0s0d = F08s0d = 1 −H0s0d = F08s`d = H0s`d = 0. s6d

The interesting point of the similarity solution supported
by the earlier equations is: whena=0 or N=0, we get
T*

wsxd=T*
ws0d, hence, the wall is isothermally heated, and

the equations reduce to the ones used by Krizhevskyet al.
[8]; while a=1, the wall and the ambient fluid have the same
vertical temperature gradient. Consequently the local heat
flux dissipated from the plate is

qsx * d = − lU ]T*

]y*
U

y*=0

= − U l

Î2L*

]H0

]h
U

h=0

fT*
ws0d − T*

`s0dgfGr + sa − 1dXg,

s7d

which represents a uniform-heat-flux boundary condition as
a is unit. Herel is the conductivity of the fluid. By simple
transformation, the ordinary differential equations fora=1
can be reduced easily to the same form as discussed previ-
ously [4,6]. Therefore, present similarity solution makes it
possible to study the flow fields continuously from the

uniform-heat-flux wall to the isothermal wall just by varying
the temperature gradient ratioa. Equations(5) and (6) are
resolved by forth-order Runge-Kutta procedure and shooting
method.

It is shown in Fig. 2 that the steady basic flow has rever-
sals and temperature defects for both the isothermalsa=0d
and the uniform-heat-fluxsa=1d boundary conditions.
Largera means less influence of the stratified background on
the flow field. Whena=9 no flow reversal can be found in
the velocity profile, though the temperature defect still exists.
In fact the flow reversal is difficult to find aftera.5 for
Pr=6.7.

The instability analysis is focused on the transition be-
tween the two typical boundary conditionss0øaø1d and in
the range 0ø«X,1 s0øx* ,L* d. The following forms of
disturbance stream function and temperature are employed
(subscript “1” refers to the disturbance field):

w1 = 2Î2f1 + sa − 1d«XgC1shdexpfisk1X − v1tdg,

f1 = F1shdexpfisk1X − v1tdg, s8d

and the Orr-Sommerfeld equation coupled with energy equa-
tion can be obtained according to stability theory

5sC19 − k2C1dSF08 −
v

k
D − F0-C1 =

1

ikG
hC1-8 − 2k2C19 + k4C1 + F18j

SF08 −
v

k
DF1 − H08C1 =

1

ikGPr
sF19 − k2F1d 6 s9d

with the boundary conditions

C1s0d = C18s0d = F1s0d = C1s`d = C18s`d = F1s`d = 0,

s10d

where

G = 2Î2Grf1 + sa − 1d«Xg, k = Î2k1,

v =
v1

Î2f1 + sa − 1d«Xg
.

The modified Grashof number, wave number and fre-
quencyG, k, andv are introduced only to simplify the equa-
tions. It is noted that in order to deduce the earlier equations
some additional terms are ignored asG−1@1, and this con-
dition is satisfied well in all instability problems discussed
later.

FIG. 2. The cross-stream pro-
files of dimensionless vertical ve-
locity (a) and temperature(b) as
functions of the temperature gra-
dient ratioa for Pr=6.7.
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In Sec. III we carry out a fully spatiotemporal stability
analysis. Consequently both the modified wave numberk and
frequencyv of the disturbances are taken as complex num-
bers. The boundary conditions at infinity are replaced by
Nachtsheim’s asymptotic forms[18] at a finite cross-stream
distancehmax for numerical reasons. The coupled disturbance
Eqs.(9) and(10) are discretized with fourth-order finite dif-
ference scheme atn uniformly distributed points in theh
interval [0, hmax]. The resulting amplitude equations define
an algebraic systemAsC1,F1d=0 with sparse 2n32n com-
plex matrix A. The homogeneous equation admits nonzero
solutions forC1 andF1 if and only if the determinant ofA:

uAsk,v,Gdu = uAsk,v,Gr,Xgdu = 0. s11d

Based on the earlier relation a variable(e.g., the complex
k) can be resolved by the predictor-corrector method after all
the remaining variables are specified. In order to achieve
numerical accuracy of the results, a high enough number of
points n and a large enoughhmax must be chosen. In this
paper, the result is required to vary by no more than 0.1%
when increasinghmax to 1.5hmax. As a consequence,hmax
,7hsF08maxd is used for all subsequent calculations. The
grid point number is determined when the absolute value of
the result varies by less than 10−8 on doubling the grid
points. The numerical methods described here have been
used to study the absolute instability in vertical heated slot
[16], and tested successfully against the results of previous
researches[8,19].

III. SPATIOTEMPORAL INSTABILITY

The wave number observed along the rayX/t=0 at a
fixed spatial location in a laboratory frame is defined by the
zero-group-velocity

]v

]k
sk0d = 0, s12d

andvo=vsk0d. The real partvo,r is referred as the absolute
frequency and the imaginary partvo,i is denoted the absolute
growth rate. The Briggs-Bers criterion is used to distinguish

absolute and convective instabilities: the flow is convectively
unstable(CU) if vo,i ,0 and absolutely unstable(AU) if
vo,i .0. Moreover, the saddle point described by Eq.(12)
must be a pinching point between two distinct spatial
branchesk+ andk− (k complex andvi constant) originating
from distinct halves of thek plane whenvi is decreased. This
condition is systematically checked in present work.

It is shown in Fig. 3(a) that when the modified Grashof
numberG is less than the critical valueGc, the flow is stable.
At higher G sGc.G.Gcad, the flow becomes convectively
unstable. For smalla (e.g.,a=0.15), it is illustrated intrigu-
ingly that the flow turns to be absolutely unstable when
Gca,G,Gac. TheGca andGac are the critical Grashof num-
bers defining the convective-absolute and the absolute-
convective instability transitions. The existence ofGca for
isothermal wallsa=0d was reported before[8], but the re-
searchers did not explore higher Grashof number to find the
Gac. Figure 3(a) also shows that the absolutely unstable re-
gion becomes smaller at largera, and aftera is larger than
0.17 the flow system does not support the absolutely unstable
modes for Pr=6.7(water). Since it is well known that the
absolute unstable mode can be self-excited and behaves as an
oscillation source, the laminar-turbulence transition is much
easier for absolutely unstable flow than for convectively un-
stable one. Therefore, the importance of the present result
[Fig. 3(a)] is that it provides a new mechanism for us to
control the flow state and heat transfer: increasinga when we
want to keep the flow laminar and decrease heat dissipation,
or decreasinga if we hope it to be turbulent.

Whena=1, it is shown in Fig. 3(b) that enlarging Prandtl
number increasessvo,idmax. However, the flow remains con-
vectively unstable even Pr reaches as high as 10 000, where
the solutions should be very close to their asymptotic limits.
This result confirms the first part of past conjecture: the flow
with uniform heat flux boundary is convectively unstable,
but denies the second part at least in the view of linear
theory: the existence of absolute instability.

In order to analyze an isothermal boundary layer,
Krizhevsky et al. [8] defined a velocity ratioR, the ratio
between the absolute values of the minimum and the maxi-
mum in the vertical velocity profile, and concluded that asR
increased the flow was more susceptible to be absolutely
unstable. In present case, our interest mostly lies ina
P f0,1g, and smallera means larger downstream variation of
the temperature difference between the wall and the ambient

FIG. 3. (a) The convective/
absolute instability boundary for
Pr=6.7. AU, absolutely unstable;
CU: convectively unstable andS:
stable.(b) The modified absolute
growth ratevo,i as a function ofG
for different Prandtl numbers with
uniform-heat-flux boundary con-
dition a=1.
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fluid at the same elevation, which leads to stronger reverse
flow. As a result, largerR corresponds to smallera [see Fig.
2(a)], and according to the earlier analysis the flow is more
yielding to the absolute instability. Therefore, our results are
in consistent with the conclusion of Krizhevskyet al.

IV. DIRECT NUMERICAL SIMULATION

In this section we compare our theoretical results with
direct numerical simulations of the natural convection flow
in a square cavity filled with air, whose vertical sidewalls
dissipate uniform heat flux while the top and bottom ends are
adiabatic (see Fig. 1). When the heat flux is large, two
boundary-layer regimes will form near the vertical walls,
while the core fluid is motionless and the core temperature
varies linearly in vertical direction. Gill[4] studied such
buoyancy layer and found an asymptotic solution, which is
just a special casesa=1d of the present similarity solution.

Based on the Boussinesq assumption, the complete
Navier-Stokes equation coupled with energy equation is in-
tegrated by a pseudospectral algorithm, and no-slip boundary
condition is used for velocity on all walls. A spatial expan-
sion in series of Chebyshev polynomials and a semi-implicit
second-order finite-difference time-marching scheme are
used. The Helmholtz equations arising from time discretiza-
tion are solved with the tau method and the partial diagonal-
ization algorithm [20]. The incompressibility condition is
treated by the use of an influence matrix technique[21,22].
Spatial resolution 2573385 is used in order to obtain high
accuracy. For the sake of brevity, the details of the algorithm
are not reproduced here.

Conveniently, the origin of the coordinates is chosen at
the center of the left vertical wall. The asymptotic relation
for Pr!1 between the length scaleL* and the width of the
square cavityH can be obtained according to Kimura and
Bejan’s analysis[6]:

H

L*
=

1

2Î2
GrPr1/4. s13d

Although the earlier relation was obtained for large Prandtl
number, it was concluded that the Prandtl number does not

have a significant influence on solution as long as Pr is0s1d
or greater[7]. In our numerical simulation Pr=0.71, and it is
shown in Fig. 4 that when the flow reaches a steady state, the
numerical data for temperature and stream function agree
very well with the similarity solutions. Since the unstable
modes will grow up from small disturbances to saturated
states, a natural question that needs to be answered is how
the nonlinear process affects their spatiotemporal properties.

In order to study the nonlinear effect, we choose Gr=45,
which is nearly two times larger than the critical value
(Grcrit =24 for Pr=0.71). The initial disturbance is introduced
by using a solution obtained for a different Grashof number
as the initial field. Since the flow in the boundary-layer re-
gime is almost parallel in vertical direction, the nonuniform
disturbances arise near the cavity corners. The temporal evo-
lutions of the horizontal velocityV at fixed points are shown
in Fig. 5. It is illustrated that the initial disturbances trigger
regular fluctuating waves that drift downstream. The oscillat-
ing frequency and the maximum amplitude of these waves
increase in the downstream direction, and reach some finite
values at last.

FIG. 4. Comparison of(a)
stream function and(b) tempera-
ture between the similarity solu-
tions for a=1 (solid line) and the
numerical results obtained for Gr
=23.2 (h) and Gr=27.8(x). The
simulation data are calculated at
the centerlinesx* =0d when the
flow reaches its steady state.

FIG. 5. Time traces of horizontal velocity for Gr=45 at several
locations in the boundary-layer regime. The thick solid line, dashed
line, solid line, and dotted line indicate data at points
sx* / H ,y* / Hd=s−0.3649,0.0014d, s−0.1989,0.0014d, (0, 0.0014),
and (0.3649, 0.0014).

ABSOLUTE AND CONVECTIVE INSTABILITIES OF… PHYSICAL REVIEW E 70, 066311(2004)

066311-5



The spatial structure of the disturbing temperature field is
shown in Fig. 6. Arising near the left-bottom corner, the spa-
tially amplified wave packet is swept downstream and devel-
ops to a saturated state. This is a typical feature of convective
instability. A close examination can find that the wavelength
becomes short during the nonlinear evolution. After blocked
by the top boundary at the left-top corner, the saturated
waves are damped. Since there is no mechanism in a closed
cavity to feed perturbations at the upstream part of the
boundary-layer regime, as shown in Fig. 6 fort=9700, the
disturbing field tends to vanish after long time iteration. The
flow near the right vertical wall shows similar phenomena as
revealed in Fig. 6 except the orientation: the wave packet
drifts from top to bottom and is damped at the right-bottom
corner.

Since the fluctuating waves present convectively unstable
properties obviously, we compare them with analytical solu-
tions obtained by using spatial mode, where the frequencyv
is looked as real andk is taken as complex. It is shown
clearly in Fig. 7 that at the first stage of instability, the fre-
quency and wave number of the fluctuating wave coincide
well with the values of the convectively unstable mode with
the largest spatial growth rate. According to present numeri-
cal simulations, we can also conclude that, although the non-
linear effect leads to the increase of the wave number and the
frequency, the flow in the boundary-layer regime still re-
mains convectively unstable.

V. CONCLUSIONS

The instability properties of natural convection in the
boundary-layer regime with thermal stratification back-
ground have been investigated theoretically and numerically.

By introducing a parametera, the temperature gradient
ratio between the wall and the ambient fluid, we obtain a
similarity solution, which includes previous solutions as its
special cases. Based on an instability analysis with the
coupled Orr-Sommerfeld equation and the energy equation,
it is shown that the temperature gradient ratio has dramatic
influence on the spatiotemporal properties of the flow. For
small a, the flow may change from convectively unstable to
absolutely unstable asGca.G.Gac, and will turn to be con-
vectively unstable again whenG.Gac. These instability
transitions not only reveal a mechanism to control the flow
state, but also provide an ideal model for further study of the
global instability[14], which exists wherever local absolute
instability occurs for spatially developing flows.

According to the instability theory, only convectively un-
stable mode exists whena is large(e.g.,a=1). This predic-
tion is consistent with our numerical result about the
boundary-layer regime in a square cavity. When the flow is
steady, the numerical data for velocity and temperature agree
well with the similarity solutions. When disturbances are in-
troduced, the convectively unstable mode with the largest
growth rate will develop first and dominate the flow pattern.

FIG. 7. The theoretical growth
rate of convectively unstable
mode as a function of(a) fre-
quencyvr and (b) wave number
kr for Gr=45. The thin vertical
dashed lines indicate the initial
state of the fluctuating wave found
in numerical simulation, and the
thick dashed lines indicate its
finite-amplitude state near the left-
top corner.

FIG. 6. Isocontours of the dis-
turbing temperature fieldfstd
−fref near the left wall for Gr
=45 at t=1050, 1650, 3850, and
9700 (from left to right). fref is
the temperature field of supercriti-
cal steady state obtained att
=24 000. Solid(dashed) lines in-
dicate positive(negative) values
except for the solid line adjacent
to the dashed lines that indicates
zero.
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The spatially amplified wave packet drifts downstream, and
its frequency and wave number increase due to nonlinear
effect. Since the convectively unstable waves are damped at
the corner and no other disturbing sources exist in the closed
cavity, the whole flow field will converge finally to the su-
percritical steady state.
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